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AbstractÐThis paper is concerned with the theoretical analysis to obtain the ¯ow characteristics of
multiphase mixtures in a vertically ®xed air-lifting pipe. In this present investigation, the case is treated
where a transition process from a solid±liquid two-phase mixture ¯ow to a solid±gas±liquid three-phase
mixture by injecting gas-phase into the upriser through a gas injector is present. The system of
equations governing the liquid±solid two-phase mixture ¯ow consists of two mass conservation
equations, two momentum conservation equations and a requirement for two phase volumetric frac-
tions. Again, the gas±liquid±solid three-phase ¯ow ®eld after the position of gas injection is solved by
three mass conservation equations, three momentum equations, a gas equation of state and a require-
ment for the individual phase volumetric fractions. The transitions of the ¯ow pattern of gas phase
from bubbly to slug ¯ows and from slug to churn ¯ows are taken into account in the system of
equations governing the three-phase ¯ows. In order to verify the validity of the system of governing
equations accounting for the ¯ow patterns transitions of gas-phase, the ¯ow characteristics calculated
on the basis of the present theoretical model have been compared with experimental data measured by
the other investigators. As a result, we have found that the present theoretical model built up in this
study gives a good ®t to the experimental data obtained by several investigators. Furthermore, we have
demonstrated that the present model is capable of predicting the maximum solid/liquid volumetric ¯ux.
# 1998 Elsevier Science Ltd. All rights reserved
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1 . INTRODUCTION

It is very di�cult to theoretically analyze the ¯ow characteristics of the case where two or three
di�erent phases, among solid-, gas- and liquid-phases, interact with each other and such two- or
three-phase mixtures ¯ow in a pipe. It is commonly accepted that the situation where the ¯ow
®eld peculiar to the mixture ¯ow can be concretely solved without relying on any empirical/ex-
perimental constitutive equation is restricted to the equilibrium/homogeneous two-phase ¯ow
capable of neglecting the velocity di�erence between di�erent phases.

The air-lift pump, which was originally thought to be applicable for a few simple uses like
pumping water, has been utilized as a means of conveying slurries in mining and transporting
explosive/poisonous liquid. More recently, it has been reported by Kamata and Ito (1995) that
in the steel making process, although the principle of the air-lift pump is applied only to an RH
vacuum degasser to circulate molten steel and to remove hydrogen gas, carbon and unmetallic
inclusions in molten steel, the simplicity of the equipment may make it applicable for the trans-
portation of molten iron/steel between di�erent re®ning processes. Again, it is well known that
there are a vast amounts of marine mineral resources such as manganese nodules at the deep-
sea bed of 4000 m to 6000 m in water depth. For lifting these mineral ores from the deep-sea
bed to the sea surface, the utilization of the air-lift pump is anticipated and examined from var-
ious aspects.
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Thus, Yoshinaga et al (1990, 1996) proposed a method for predicting the steady operation
performance by applying the momentum conservation law to a control volume bounded by the

wall and the top and bottom cross sections of the lifting pipe. This is based upon a very simple

principle of the mechanics such that the di�erence between the momentum which leaves through

the top cross section and the momentum which enters through the bottom cross section corre-
sponds to the external forces; the friction force acting between the pipe wall and the mixture,

the body force of gravity and the pressure force of the surrounding water acting on the bottom

cross section. They compared the predicted results on the basis of the method with the exper-
imental data by other investigators and their own experimental data and con®rmed the validity.

Also, they pointed out that none of the methods proposed by other investigators can give good

®t to the experiments performed by Sadatomi et al. (1990a). However, it is unbelievable that

their method is omnipotent due to the fact that the idea which underlies their method is too
simple. In fact, they themselves (1990b) recognized that at very high air ¯ow rates, the predicted

values on the basis of the method are lower by about 30% at maximum than the experimental

ones. Also, it is impossible to treat the unsteady problems by their method.

Now, it seems to be very di�cult to establish an economically optimum condition for oper-

ation performance of air-lift pump, since the theoretical model to predict the ¯ow characteristics

has been not exactly built up yet. It may be commonly accepted that one of the main factors
which make it extremely di�cult is the transitions of the ¯ow pattern of gas-phase. When gas±

liquid mixtures ¯ow upward in a vertical pipe, the two phases distribute in a number of pat-

terns, each characterizing the radical and/or axial distribution of liquid and gas. The ¯ow is

usually quite chaotic, and these phase distributions are di�cult to describe. Hewitt and Hall-
Taylor (1970) designate four basic patterns for up¯ow namely, bubbly ¯ow, slug ¯ow, churn

¯ow and annular ¯ow. In the case of annular ¯ow, the continuity of the gas along the pipe

appears in the core. Accordingly, the solid particles can not be conveyed upward when the tran-
sition to the annular ¯ow occurs in a vertical long pipe.

A multi¯uid model is generally formulated by a set of conservation equations governing the

balance of mass, momentum and energy of each phase. Since the macroscopic ®elds of one
phase are not independent of those of the other phases, the interaction terms which couple the

transport of mass, momentum, and energy of each phase across the interface appear in the ®eld

equation. In the multi¯uid model formulation, the transport processes of each phase are

expressed by their own balance equations. Therefore, it can be expected that the model can pre-
dict more detailed changes and phase interactions than a mixture model such as the drift ¯ux

model, see Zuber (1967) and Ishii (1977). As pointed out by Ishii (1982), the weakest link in the

multi¯uid model formulation is the constitutive equations for the interfacial interaction terms,
and the di�culties arise due to the complicated motion and transitions of the ¯ow pattern of

gas-phase, as mentioned already. It is indispensable to introduce constitutive relations for inter-

facial transfer terms, in particular, the drag correlation and interfacial area concentration for

each ¯ow pattern into the multi¯uid model formulation.

The purpose of the present investigation is to theoretically analyze the ¯ow characteristics of

the air-lift pump for the case where a transitional process from the solid±liquid two-phase mix-

ture ¯ow to the solid±gas±liquid three-phase mixture one by injecting gas-phase into the upriser
through a gas-injector is present. The system of governing equations is based upon the multi-

¯uid model. Therefore, the equations governing the two-phase mixture ¯ow consist of two mass

conservation equations, two momentum equations and an equation for the solid and liquid
volumetric fractions. Also, the solid±gas±liquid three-phase mixture ¯ow ®eld after the position

of the gas-injector is solved by three mass conservation equations, three momentum conserva-

tion equations, a gas equation of state and an equation for the individual phase volumetric frac-

tions. The transitions of the ¯ow pattern of gas-phase from the bubble ¯ow to the slug ¯ow and
the slug ¯ow to the churn ¯ow are taken into account in the system of equations governing the

three-phase mixture ¯ow. In order to verify the validity of the system of equations accounting

for ¯ow pattern transitions, the ¯ow characteristics calculated on the basis of the present theor-
etical model have been compared with the experimental data measured by several other investi-

gators and discussed from various aspects.
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2. GOVERNING EQUATIONS

In this present investigation, the system of equations governing the solid±liquid two-phase

and the solid±gas±liquid three-phase ¯ows is based upon the multi¯uid model. The body of the

air-lift pump consists of two parts. One of which is a suction pipe where the solid±liquid two-

phase mixture ¯ows. The other is the upriser where the solid±gas±liquid three-phase mixture

¯ows. Therefore, the system of equations should be classi®ed into two parts: (1) the solid±liquid

two-phase ¯ow region from the bottom cross section to the position of the gas injection and (2)

solid±gas±liquid three-phase ¯ow region from the position of the gas injection to the top cross

section. In the two-phase region, the number of the ¯ow characteristics to be required is ®ve fac-

tors (uL, uS, eL, eS, and P). In the three-phase region, the number is eight factors (uG, uL, uS, eG,
eL, eS, P and rG). Here, u, e, P and r denote the velocity, volumetric fraction, pressure and den-

sity, respectively. The subscripts G, L and S denote the gas-, liquid- and solid-phases, respect-

ively. On the other hand, the system of equations governing the two-phase mixture ¯ow consists

of two mass conservation equations, two momentum conservation equations and an equation

for volumetric fraction requirement. Also, the system of equations governing the mixture ¯ow in

the upriser is composed of three mass conservation equations, three momentum conservation

equations, a gas equation of state and an equation for volumetric fraction requirement. The sys-

tem of equations is mathematically closed both in the two- and three-phase regions.

Prior to the description of the system of governing equations, we wish to de®ne the coordi-

nate system along the vertical lifting pipe. Figure 1 shows the outline of the mixture ¯ow system

along the vertical and straight pipe with a uniform cross sectional area. x denotes the distance

from the bottom end of the pipe (x = 0). The position of gas injection is set at x = Lg and the

position of the top end of the pipe corresponding to the upriser outlet is set at x = L. The dis-

tance from the bottom end to the water surface level is denoted by Ls (<L). Accordingly, the

range of 0Rx < Lg corresponds to the solid±liquid two-phase ¯ow region and the range of

LgRxRL corresponds to the solid±gas±liquid three-phase ¯ow region along the x-axis.

Figure 1. Outline of mixture ¯ow system in a vertical pipe.
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The conservation equations of mass and momentum which govern each phase in the solid±
gas±liquid three-phase ¯ow region are given by
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in which t is the time. Fik (k= G, L, S) appearing in the momentum conservation equations
denotes the drag force transferred to phase k (per unit volume) due to the interaction between
phases. Fwk is the friction force transferred from pipe wall to phase k. Fgk is the gravity force
acting to phase k and Fvk is the virtual mass force acting to phase k in accelerating multi-phase
¯ow.

And the following relations

P � rGRT �7�

EG � EL � ES � 1 �8�
must be satis®ed. Here, R is the gas constant and T is the absolute temperature of gas-phase. T
is regarded as constant because the mixture ¯ow ®eld is assumed to be in thermal equilibrium
between/among phases and the temperature gradient is neglected along the lifting pipe. Since
the volumetric fraction of solid-phase is very small compared with that of gas-phase in the oper-
ation performance of air-lift pump, the interaction will be neglected between solid- and gas-
phases.

The system of equations governing the solid±liquid two-phase mixture ¯ow can be easily
obtained by putting eG=0 and FiG=FwG=FgG=FvG=0 in [1]±[8]. At the same time, the gas
equation of state given by [7] is not required in the solid±liquid ¯ow region. Therefore, as men-
tioned above, the ®ve ¯ow characteristics to be required in this region can be determined by the
®ve governing equations.

However, in order to practically evaluate the ¯ow characteristics of the mixture ¯ow, it is
indispensable to formulate the external forces acting to phase k (Fik, Fwk, Fgk and Fvk) appearing
in [4]±[6]. Furthermore, the key issue in the accurate modelling of multiphase ¯ow is to specify
the constitutive terms, which includes the phase interaction terms. The closure relationship used
in the present theoretical model will be described in the next section.

3 . FORMULATION OF EXTERNAL FORCES AND INTERACTIVE EFFECTS

3.1. Drag force

The drag force depends on the pressure distribution acting on a material surface being in
liquid-phase and the interfacial friction owing to slip between solid- and liquid-phases and/or
between gas- and liquid-phases.
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Firstly, the drag FiG transferred from liquid-phase to gas-phase is given by

FiG � 1

8
rLaiGCDGjuG ÿ uLj�uG ÿ uL� �9�

in which aiG and CDG denote the interfacial area concentration and the drag coe�cient, respect-
ively. These depend upon the ¯ow patterns of gas-phase strongly. Since the interfacial area con-
centration is a parameter which characterizes the structure of a ¯ow, its mechanistic modelling
is based upon the geometrical factors, gas volumetric fraction and ¯ow. According to Ishii et al.
(1982), the interfacial area per unit volume is given as follows,

aiG � aiGb � 6EG
dsm

�10�

in the bubble ¯ow regime and

aiG � aiGs � 4:5

D

EG ÿ EGs

1ÿ EGs
� 6EGs

dsm

1ÿ EG
1ÿ EGs

�11�

in the slug and churn-turbulent ¯ow regimes. Here, the D is the pipe diameter. eGs and dsm
denote the average gas volumetric fraction in the liquid slug and the sauter mean diameter of
small bubbles in the liquid slug, respectively. The ®rst term on the right hand side in [11] rep-
resents the contribution of the gas slug and the second term is that of small bubbles in the liquid
slug. Kurul and Podowski (1991) recommended the following expression for eGs

EGs �
EG �0 < EG<0:25�
0:3929ÿ 0:5714EG �0:25REG < 1�
0:05 �0:6REG < 1�

8<: �12�

According to this, the interfacial area concentration calculated by [11] agrees with the expression
of [10] in the region of 0 < eG<0.25 and it is suggested that the ¯ow pattern corresponds to the
bubble ¯ow regime.

Again, the following relation,

dsm � 1:06
s

r1=3L

 !1=3
EG�1ÿ EG�D2

j�ÿdP=dx�
� �2=9

�13�

is given by Kocamustafaogullari et al. (1994). Here, s is the surface tension and j is the super-
®cial velocity which is represented by the sum of the volumetric ¯uxes of solid-, gas- and liquid-
phases (j = jG+jL+jS).

We consider the ¯ow pattern transitions of gas-phase when the mixture containing the gas-
phase ¯ows upward in a vertical pipe. Gri�th and Wallis (1961) postulated that the bubble±slug
transition depends on the gas volumetric fraction eG and the criterion for transition from bubbly
to slug ¯ow is that eG reaches 0.25 or a little more. This agrees with the prediction by Kurul
and Podowski (1991) who recommended that the interfacial area concentration eGs = eG (see
[12]) can be used for volumetric fraction eG less than 0.25. Taitel et al. (1980) also supported
this value for the bubble-slug transition.

Denoting the gas volumetric fraction by e1 when the transition to the slug ¯ow begins to
occur and by e2 when the transition to the slug ¯ow reaches completion, we assume in the pre-
sent investigation that

E1 � 0:25ÿ 0:05 �14�

E2 � 0:25� 0:05 �15�
Also, denoting the volumetric fraction by e1 when the slug±churn transition begins to happen
and by e2 when the transition to the churn ¯ow is just concluded, we assume that

E1 � 0:7415ÿ 0:05 �16�
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E2 � 0:7415� 0:05 �17�
This value, 0.7415, is determined, as will be mentioned later, by regarding the drag coe�cient of
the slug ¯ow to be equal to that of the churn ¯ow, because the drag coe�cient is given as a
function of the gas volumetric fraction in the two regimes. In the transitional regions from the
bubbly to the slug ¯ows and the slug to the churn ¯ows, the following weight factor,

r � 1

2
1� sin

p
2

2EG ÿ E1 ÿ E2
E2 ÿ E1

� �� �� �
�18�

is introduced to the interpolation of the interfacial area concentration.
For the transition range from the bubbly to the slug ¯ows,

aiG � �1ÿ r�aiGb � raiGs �19�
and for the transition range from the slug to the churn ¯ows,

aiG � �1ÿ r�aiGs � raiGc �20�
are introduced to the calculation to be mentioned later. However, the weight factor r for the
transition from the slug to the churn ¯ows becomes substantially meaningless, because the ex-
pression of the interfacial area concentration shown by [11] is given in the same form for both
the slug and the churn ¯ows. At any rate, a width for the transition region is designated in the
present theoretical model on the premise that the transition of the gas ¯ow pattern does not dis-
continuously occur, but it continuously occurs.

The interfacial drag coe�cient of gas-phase, of course, is di�erent depending upon the gas
¯ow pattern. The drag coe�cient, CDGb, for a swarm of bubbles

CDGb � CDG0�����
EL
p �21�

is proposed by Tomiyama et al. (1995a,b). Here, since CDGb 2CDG0 if eL 21, CDG0 denotes the
drag coe�cient of a single bubble in a stagnant liquid and is given by

CDG0 � max min
24

ReG
�1� 0:15Re0:687G �; 72

ReG

� �
;
8

3

E0

E0 � 4

� �
�22�

in which ReG and E0 denote the bubble Reynolds number and the EoÈ tvoÈ s number, respectively,
and are de®ned by

ReG � dGjuG ÿ uLjrL
mL

�23�

E0 � g�rL ÿ rG�d2
G

s
�24�

Here the dG is assumed to be dsm (see [13]). It has been reported that [22] is applicable under the
conditions of 10ÿ3<ReG<105,10ÿ2<E0<103 and 10ÿ14<M < 107, in which M is the Morton
number de®ned as

M � gm4L�rL ÿ rG�
r2Ls3

�25�

Furthermore, the interfacial drag coe�cient of the slug ¯ow CDGs and that of the churn ¯ow
CDGc are given by

CDGs � 9:8�1ÿ Eb�3 �26�

CDGc � 8

3
�1ÿ Eb�2 �27�
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respectively (Ishii et al. 1982). Here,

Eb � EG ÿ EGs

1ÿ EGs
�28�

In the present theoretical model, for the transition range from the bubbly to the slug ¯ows,

CDG � �1ÿ r�CDGb � rCDGs �29�
and for the transition range from the slug to the churn ¯ows

CDG � �1ÿ r�CDGs � rCDGc �30�
where the weight factor r is the same as de®ned in [18].

By the way, we can understand that the value of 0.7415 appearing in [16] and [17] corre-
sponds to the gas volumetric fraction of the case where the drag coe�cient of the slug ¯ow is
set to be equal to that of the churn ¯ow, as already mentioned.

Since the solid particles to be lifted are incompressible and their shape remains unchangeable
along a vertical pipe, the interfacial area concentration aiS is given by

aiS � 6ES
dS

�31�

in which dS is the diameter when the solid particles are spherical in shape. If otherwise, dS is the
diameter of equivalent sphere after reduction on the assumption that the particles are spherical
body with the same volume and density. Therefore, the interfacial drag force FiS per unit
volume exerted by the liquid-phase to the solid particle is given by

FiS � 3

4

ES
dS

rLCDsjuS ÿ uLj�uS ÿ uL� �32�

Also, the drag coe�cient of solid particles is evaluated as a function of the particle Reynolds
number by

CDS �

24

ReS
�1� 0:15Re0:687S � �ReSR700���������
24

ReS

s
� 0:34 Re0:06S � 1

1:72� 0:018ReS

� �" #2

�700 < ReS < 1:5� 105�

8>>>><>>>>: �33�

when the particles are spherical in shape. Here, ReS is de®ned by

ReS � dSjuS ÿ uLjrL
mL

�34�

If the particles are not spherical, we can experimentally evaluate the drag coe�cient from the
power balance on condition that the terminal velocity is reached in a stagnant liquid.

The interfacial drags FiG and FiS exerted to the gas- and solid-phases, respectively are based
upon the interaction with the liquid-phase. Accordingly, the following relation

FiG � FiL � FiS � 0 �35�
holds between/among di�erent phases.

3.2. Frictional force between mixture and pipe wall

When two- and three-phase mixture ¯ows upward in a vertical pipe, the pressure drop occurs
owing to interfacial friction between the mixture and the inner wall of pipe. In the present
model, the gas±pipe wall friction and the solid particles±pipe wall friction are neglected, and the
friction force is apparently represented by the liquid±pipe wall interaction. Therefore, the fric-
tion forces, Fwk (k = G, L, S), described in [4]±[6] are put as

FwG � 0 �36�
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FwL � dPf

dx
� ÿ 1

2
lrmu

2
m

1

D
�37�

FwS � 0 �38�
in which rm is the mixture density given by

rm � ELrL � ESrS �39�
in the solid±liquid two-phase ¯ow region and

rm � EGrG � ELrL � ESrS �40�
in the solid±gas±liquid three±phase region. Also, um denotes the super®cial mixture velocity
given by

um � ELuL � ESuS �41�
in the solid±liquid two-phase mixture ¯ow region and

um � EGuG � ESuS: �42�
in the solid±gas±liquid three-phase mixture region. The friction factor l needed in estimating
the friction force can be predicted by the Blasius type equation based upon the super®cial mix-
ture velocity um and the liquid kinematic viscosity nL, that is

l � C
umD

vL

� �ÿn
�43�

In the calculations to be compared with the experimental data measured by other investigators,
as will be mentioned later, C and n are taken as 0.45 and 1

50 1
4, respectively.

3.3. Body force

Since only the body force owing to the gravity may be taken into consideration, the body
force terms, Fgk (k = G, L, S), appearing in [4]±[6] are simply expressed as

FgG � EGrGg �44�

FgL � ELrLg �45�

FgS � ESrSg �46�
in which g denotes the acceleration due to the gravity.

3.4. Virtual mass force

The virtual mass force comes into play, when one phase is accelerating relative to the other.
Lahey et al. (1980) investigated the e�ect of the virtual mass in accelerating gas±liquid two-
phase ¯ow for various nozzle/di�user ¯ows. The most general form of the one-dimensional and
steady-state virtual mass acceleration avm is given by Drew et al. (1979)

avm � uG
duG
dx
ÿ uG

duL
dx
�Wv �lv ÿ 2��uG ÿ uL� duG

dx
� �1ÿ lv��uG ÿ uL� duL

dx

� �
�47�

for the gas-phase in the gas±liquid two-phase ¯ow. Here, lv and wv are the arbitrary parameters
to be determined experimentally.

Lahey et al. (1980) con®rmed from the results of hypothetical nozzle/di�user experiments for
vertical co-current and counter-current ¯ows that for the general avm case, with lv=1 and lv=2,
very little di�erence in the calculated gas velocity uG is evident, and that the answer is approxi-
mately unchanged, even when the virtual mass force is set to zero. From such a point of view, it
is controversial whether or not the virtual mass force term need be introduced to the momentum

N. HATTA et al.546



conservation equations for each phase. Then, the virtual mass force terms for gas-phase as well
as solid-phase are given by

FvG�EGrLkvG
@uG
@t
ÿ @uL
@t
� uG

@uG
@x
ÿ uG

@uL
@x
� wV �lv ÿ 2��uG ÿ uL� @uG

@x
� �1ÿ lv��uG ÿ uL� @uL

@x

� �� �
�48�

FvS � ESrLkvS
@uS
@t
ÿ @uL
@t
� uS

@uS
@x
ÿ uL

@uL
@x

� �
�49�

in which kvG and kvS denote the virtual mass coe�cients of gas- and solid-phases, respectively,
and are given by

kvG �
1

2
� 1� 2EG
1ÿ EG

�0REG < 0:5�
1

2
� 3ÿ 2EG

EG
�0:5REG < 1�

8>><>>: �50�

kvS � 0:5 �51�
The constitutive equation [50] has been developed by Ransam et al. (1981) and we use this for-
mula in the calculation to be mentioned later. Following Hinze (1962) and Wallis (1969), wv is
set to zero in the numerical calculations to be compared to the experiments performed by other
investigators.

Since the virtual mass forces FvG and FvS exerted to the gas- and solid-phases, respectively,
are based upon the interaction with the liquid-phase, the following balance law between di�erent
phases

FvG � FvL � FvS � 0 �52�
should be obeyed.

4 . PROCEDURE OF NUMERICAL CALCULATIONS

4.1. Steady-state ¯ow characteristics

The procedure of numerical calculation on the steady-state condition is very simple and based
upon numerical process mentioned in our previous works (Hatta and Fujimato 1996 and
Fujimoto et al. 1997). Firstly, the gas and solid volumetric fractions eG3,eS3 just after of a gas-
injector and the volumetric ¯uxes jG3, jL and jS are given, in which the su�x 2 and 3 denote the
condition (or state) just before and after the gas-injector, respectively. In doing this, the ¯ow
characteristics in the solid±liquid two-phase mixture ¯ow region can be determined as follows:

EL3 � 1ÿ EG3 ÿ ES3 �53�

EL2 � EL3
�1ÿ EG3� �54�

ES2 � 1ÿ EL2 �55�

uL2 � jL
EL2

�56�

uS2 � jS
ES2

�57�
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Since all of the ¯ow characteristics in the solid±liquid two-phase mixture ¯ow region have been

determined at this stage, the static pressure P3 at the gas-injector can be obtained by

P3 � P0 ÿ rm2gLg ÿ 1

2
lrm2�jL � jS�2 Lg

D
�58�

in which P0 is the static pressure at the cross section of the suction pipe inlet at x = 0 (see

®gure 1). The gas density rG3 is given by the gas equation of state as

rG3 �
P3

RT
�59�

And the rising velocity for each phase just after the position of gas injection

uS3 � uS2
1ÿ EG3

�60�

uL3 � uL2
1ÿ EG3

�61�

uG3 � MG

AEG3rG3

� jGarGa

EG3rG3

�62�

in which MG is the gas-phase mass ¯ow rate which is constant in the range of LgRxRL. A

denotes the cross section area of the pipe and jGa and rGa are the volumetric ¯ux and density of

the gas-phase. The subscript a denotes the value at the cross section of the upriser outlet.

By the above-mentioned numerical manipulation, the eight ¯ow characteristics (eG3, eL3, eS3),
(uG3, uL3, uS3), P3 and rG3 have been determined at this stage. Therefore, the system of

equations governing the solid±gas±liquid three-phase mixture ¯ow ®eld is numerically solved as

the boundary condition at x = Lg with the above eight ¯ow characteristics. Then, [4]±[6] are

rewitten in a simple form of

dP

dx
� C1 � C2

duG
dx

�63�

duL
dx
� �A1 � A3C1� � �A2 � A3C2� duL

dx
�64�

duS
dx
� �B1 � B2A1 � �B3 � B2A3�C1� � �B2A2 � �B3 � B2A3�C2� duG

dx
�65�

in which

A1 � FiG � FgG

kvGEGrLf�1ÿ wv � wvlv�uG � wv�1ÿ lv�uLg �66�

A2 � rGuG � kvGrLf�1ÿ 2wv � wvlv�uG � wv�2ÿ lv�uLg
kvGrLf�1ÿ wv � wvlv�uG � wv�1ÿ lv�uLg �67�

A3 � 1

kvGrLf�1ÿ wv � wvlv�uG � wv�1ÿ lv�uLg �68�

B1 � ÿ FiS � FgS

ESuS�kvSrL � rS�
�69�

B2 � kvSrLuL
uS�kvSrL � rS�

�70�
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B3 � ÿ 1

uS�kvSrL � rS�
�71�

C1 � ÿ
FwL � FgG � FgL � FgS �ML

A
A1 �MS

A
�B1 � B2A1�

1�MS

A
A3 �MS

A
�B3 � B2A3�

�72�

C2 � ÿ
MG

A
�ML

A
A2 �MS

A
B2A2

1�ML

A
A3 �MS

A
�B3 � B2A3�

�73�

In order to seek the steady-state solutions, the above equations are numerically solved. In order

to do so, the solid±gas±liquid three-phase ¯ow region (LgRxRL) is divided into numerous

small parts and three momentum equations are numerically solved in the order of [63], [64] and

[65] by using one of the numerical solution techniques for the initial value problem of ordinary

di�erential equations. There are a lot of simple solution methods such as the Runge±Kutta tech-

nique and ®nite di�erence method etc. In the calculations to be mentioned later, the explicit

Euler scheme is adopted. As the result of numerical solutions to the above di�erential equations,

we have the numerical values for P, rG, uS and uL at every nodal point. Thus, we can obtain

the following values:

ES � jS
uS

�74�

EL � jL
uL

�75�

EG � 1ÿ EL ÿ ES �76�

uG � MG

AEGrG
�77�

Incidentally, those numerical results must be unreasonable rather than reasonable because the

numerical calculation is performed as the boundary condition with the tentative ¯ow character-

istics at the gas-injector. Concretely speaking, the conditions that the velocity of the individual

phases is in the order of uG>uL>uS, and that the axial velocity gradient duk/dx>0 (k = G, L,

S) for each phase is positive are not always satis®ed in the entire range from x = Lg to x = L.

We must identify the nearest position from the gas-injector where the axial velocities for each

phase are arranged in the order of uG>uL>uS and where the velocity gradients for each phase

are positive. By so doing, we can ®nd the eight ¯ow characteristics at the position in the

x-direction, and the recalculation is possible by imposing these values to the boundary condition

at x = Lg. At the same time, it must be checked whether or not the pressure at the outlet sec-

tion of the upriser reaches Pa (atmospheric pressure). This can be adjusted by the volumetric

¯ux jL of liquid-phase. At any rate, the three conditions (1) uG > uL > uS, (2) duk/dxr0

(k= G, L, S) for each phase and (3) P = Pa must be satis®ed. The above numerical procedure

is repeated in such a way as to obtain the numerical solution satisfying these conditions.

The numerical procedure mentioned in the next section is very helpful in obtaining the physi-

cally justi®able ¯ow characteristics in the entire range from the inlet section of the suction pipe

to the outlet section of the upriser.
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5. DISCUSSIONS

In order to verify the validity of the present theoretical model based on the multi¯uid model,
the numerical results obtained by this model are compared with the experimental data measured
by other researchers. The common numerical values introduced into the calculations are as fol-
lows:

Pa �1:0� 105 �Pa�
T �293 �K�
R �287 �m2=�s2 �K��
rL �1000 �kg=m3�
vL �1:0� 10ÿ6 �m2=s�
g �9:8 �m=s2�
s �7:2� 10ÿ2 �N=m�

P0 �Pa � rLgLs �Pa�
Firstly, the numerical procedure for introducing the predicted values to be compared with the
experimental data will be developed. This has been roughly explained in the previous section.
However, in the case of comparing the numerical results with the experimental ones, attention
must be paid to that there are some numerical values restricted by the experimental conditions.

Let us now try to compare the numerical values obtained by present model with the exper-
imental data measured by Yoshinaga et al. (1990, 1996). They performed experiments using cer-
amic spheres as the solid particles, and air and water as the working ¯uids. Their experimental
results are expressed by the variation of jL against jGa with jS as a parameter. Accordingly, jGa

and jS introduced to the boundary values at the position of the air-injector must be unvaried.
Since the air volumetric ¯ux jGa are given and the air density rGa are known at the outlet sec-
tion of the upriser (x = L), the air mass ¯ow rate MG results in being kept constant. Hence, the
calculations are performed on condition that both jS and MG are constant.

At the ®rst step of the numerical procedure, the air volumetric fraction eG3, the solid volu-
metric fraction eS3 and the liquid volumetric ¯ux jL are given appropriately at any rate. Thus,
since the quantities given in [53]±[62] are automatically determined, the ¯ow ®eld in the solid±
gas±liquid three-phase mixture region can be calculated. Subsequently, one ®nds the nearest pos-
ition from the air-injector satisfying the two conditions that uG >uL >uS and duk/dx>0
(k= G, L, S) for each phase. The respective volumetric fractions at this position are regarded
as those at the air-injector. Again, the calculations in the solid±liquid two-phase ¯ow region are
performed and the boundary condition at x = Lg is renewed. By so doing, the ¯ow character-
istics in the solid±gas±liquid three-phase ¯ow can be recalculated in the range of Lg<xRL.
However, the case where the pressure at x = L is not equal to the atmospheric pressure (=Pa)
must occur. This can be adjusted by the liquid volumetric ¯ux jL. However, when jL is changed,
the physically unreasonable phenomena may be seen in the numerical calculations. For example,
the abnormality of the velocity order and/or the negative velocity gradient may appear in the
range from the position of air injection to some location in the x-direction. If such a case
occurs, one ®nds the nearest position from the air injector where uG>uL>uS and duk/dx>0
(k= G, L, S), and regards the individual volumetric fractions at this position as those at
x = Lg. Again, the ¯ow characteristics in the two-phase and in the three-phase ¯ow regions can
be computed. If the pressure at x = L is not equal to Pa, the pressure adjustment is made by
the liquid volumetric ¯ux jL.

In short, the numerical results must satisfy the conditions that P = Pa at x = L, uG>uL>uS
and duk/dx>0 (k = G, L, S). This can be achieved by repeating the above-mentioned numerical
procedure.
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Fig. 2(a±d).
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Figure 2 (a)±(f) shows the comparisons of the numerical results calculated on the basis of the

present theoretical model with the experimental data taken by Yoshinaga et al. (1990, 1996).

They performed experiments on condition that the inner diameter of pipe is D= 26 mm and

40 mm and the submergence ratio de®ned by

g � Ls ÿ Lg

Lÿ Lg
�78�

is changed in the range of g = 0.6±0.8. And the particles used were ceramic and spherical in

shape. The experimental conditions (a)±(f) listed in table 1 correspond to (a)±(f), respectively.

The length of the suction pipe Lg is 1.12 m and that of the upriser Lÿ Lg is 6.74 m. Also, the

result denoted by the arrow in ®gure 2(a) will be referred in the later part. They stated that

after the air-injection the transitions from the bubble to slug ¯ows and from the slug to churn

¯ows occur. Also, it should be noted that the drag coe�cient of solid-phase particle is treated as

a function of ReS and evaluated from [33] because solid particles are spherical in shape. These

®gures (a)±(f) demonstrate the variation of the liquid volumetric ¯ux jL against the volumetric

Figure 2. Comparison of numerical results calculated based on present theoretical model with exper-
imental data by Yoshinaga et al. (1990, 1996). Experimental conditions of ®gures (a)±(f) correspond to

cases (a)±(f) of table 1, respectively.

Table 1. List of experimental conditions by Yoshinaga et al. (1990,1996)

Case g D(mm) rS(kg/m
3) dS (mm)

(a) 0.8 26 2540 6.12
(b) 0.6 26 2540 6.12
(c) 0.7 26 3630 6.00
(d) 0.7 40 2540 9.92
(e) 0.7 26 2540 6.1
(f) 0.7 26 2540 9.9
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¯ux jGa of supplied air reduced to the atmospheric state with the solid volumetric ¯ux jS as a

parameter. The calculated values shown by solid lines give good agreement with the exper-

iments.

Figure 3 (a) and (b) indicates the ¯ow characteristics calculated on condition that

jGa=8.0 m/s and jS=0.045 m/s. This corresponds to the experimental value shown by the arrow

in ®gure 2(a). Therefore, the computation has been performed in accordance with the above

mentioned experimental condition (see case (a) in table 1). Figure 3(a) gives the steady-state vel-

ocity rising in a pipe for each phase. The left side of the dotted line corresponds to the solid±li-

quid two-phase ¯ow region and the right side does to the solid±gas±liquid three-phase region.

The velocity for each phase, of course, remains unchangeable in the solid±liquid two-phase ¯ow

region. At the air-injection point, the velocity jump of uS and uL occurs owing to injecting air

into the upriser through an air-injector. Also, in the solid±gas±liquid three-phase ¯ow region,

the order of the velocity magnitude is kept in the state of uG>uL>uS and the velocity gradient

for each phase increases slowly along the x-axis. Figure 3(b) indicates the variation of the volu-

metric fraction for each phase and of pressure with x. In the two-phase region, the both volu-

metric fractions are kept constant, and eL is much higher than eS. At the air-injector, eL and eS
are seen to drop rapidly owing to injecting air into the pipe. Also, in the three-phase region, the

volumetric fraction eG of gas-phase increases gradually along the x-axis, while eL and eS decrease

slowly. In addition, the pressure gradient is seen to be sharper in the two-phase ¯ow region than

that in the three-phase ¯ow region. The pressure at the outlet section of the upriser

(L = 7.86 m) reaches the atmospheric one Pa. Furthermore, it is seen that eG>0.8 in the entire

three-phase ¯ow region. This suggests that the churn ¯ow pattern is maintained and no tran-

sition occurs throughout this region.

Here we attempt to compare the numerical values calculated on the basis of the present theor-

etical model with the experiments performed by Kawashima et al. (1975). They performed the

Figure 3. Variation of velocity rising in a pipe for each phase (a), and variation of volumetric fraction
for each phase and of pressure with x and (b) for the case where jGa=8.0 m/s and jS=0.045 m/s which

corresponds to the experimental value shown by an arrow in ®gure 2(a).
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experiments on an air-lift pump using the pipe of inner diameter D = 50 mm and the length

L = 6.0 m. The solid particles are gravel and not spherical in shape. The diameter of equivalent

sphere after reduction on the assumption that particle is spherical body with the same volume

and the same density is dS=1.73 mm and the density rS is (2670 kg/m3). The drag coe�cient

measured by them is CDS=2.44. The submergence ratio g is set to 0.92. The length of the suc-

tion pipe is negligibly small (Lg20).

Figure 4 gives the relation between the experimental data and the calculated values. The cal-

culations have been performed in accordance with the experimental condition mentioned above.

Also, the presentation of the experimental results is the same as their original paper. The par-

ameter bs appearing in this ®gure is the volumetric concentration of particles discharged at the

outlet section of the upriser, de®ned by

bs �
jS

jL � jS
�79�

It may be accepted from this ®gure that the numerical results calculated on the basis of the pre-

sent theoretical model give best-®t to the experimental data.

Next, we will consider the comparison of the numerical results with the experiments per-

formed by Usami and Saito (1986). They performed the experiments by lifting simulated manga-

nese nodules of the equivalent sphere diameter dS=36.3 mm and the density rS=1960 (kg/m3)

in a lifting pipe of D = 155.4 mm and L = 32.63 m. In their experiments, Lg is 4.96 m and g is

0.82. Also, they reported that the measured value of the drag coe�cient for solid particles CDS

is 1.03.

Figure 5 gives the comparison between the experimental and theoretical values. The parameter

bs in this ®gure denotes the volumetric concentration of particles discharged de®ned by [79].

Although it can be imagined that the aim of this experiment is to con®rm the relation between

jGa and jS on condition that bs holds constant, it is very di�cult to explicitly understand from

such experimental results the variation of the solid volumetric ¯ux jS in a wider range of jGa. It

may be not appropriate that bs is given by a section such as bs=0.063±0.066 even for the case

of only two experimental values. At any rate, the present calculations give good agreement with

the experimental data.

Furthermore, we tried to compare the numerical results with the experiments performed by

Saito et al. (1986). They made a study on the operation performance of an air-lift pump on con-

Figure 4. Comparison of numerical results with experimental data by Kawashima et al. (1975). Note
that bs is de®ned by [79].
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dition that simulated manganese modules of dS=42.3 mm and rS=1990 (kg/m3) are conveyed
upward in a vertical pipe of D = 151 mm and L = 196.6 m. They reported that the measured
drag coe�cient CDS=0.84, the submergence ratio g = 0.936 and the length of the suction pipe
Lg=16 m.

Yoshinaga et al. (1990) attempted to compare the numerical results calculated on the basis of
their own numerical model with the experimental data measured on the above mentioned con-
dition for the two cases where bs=0 and bs=0.06±0.07. Accordingly, we will also compare the
numerical results with the above-mentioned experimental ones. The comparison is shown in
®gure 6. The expression of this ®gure is the same as the original paper by Yoshinaga et al.
(1990). The calculation shown by solid lines is based upon the present model and the calculation
by dotted lines is shown in the model by Yoshinaga et al. (1990). Apart from discussing the
quality of two kinds of numerical results, the numerical results calculated on the basis of the

Figure 5. Comparison of numerical results with experimental data by Usami et al. (1986). Note that bs
is de®ned by [79].

Figure 6. Comparison of numerical results with experimental data by Saito et al. (1986). The calcu-
lation shown by solid lines is based upon the present model and the calculation by dotted lines is based

upon the model built up by Yoshinaga et al. (1990).
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present theoretical model can be regarded to be in good agreement with the experimental ones,
in spite of scattering in the experimental data.

Finally, we will attempt to compare the numerical results with the experiments performed by
Weber and Dedegil (1976). They performed the experiments using a large-scale air-lift pump to
convey gravel. The pipe diameter is D= 300 mm, and three kinds of solid particles are used.
Table 2(a) denotes their experimental conditions and results for the case where rS=2575 kg/m3,
dS=5 mm and CDS=1.20. Table 2(b) denotes those for the case where rS=2610 kg/m3,
dS=0.6 mm and CDS=2.05, and table 2(c) corresponds to the case whose rS=1143 kg/m3,
dS=50 mm and CDS=1.17.

Figure 7(a) demonstrates the comparison between the experimental volumetric ¯ux jS, exp and
theoretical solid volumetric ¯ux jS, cal. The empty circle, solid circle and triangle corresponds to
table 2(a), (b) and (c), respectively. The present calculations are seen to be in fairly good agree-
ment with the experimental data.

Figure 7 (b) gives the variation of jL against jGa in the gas±liquid two-phase ¯ow. The empty
and solid circles in this ®gure denote the experimental data measured by them and the solid line
indicates the theoretical results calculated on the basis of the present model. The present calcu-
lations are seen to give good ®t to the experimental data.

We will discuss the existing region of numerical solutions from a practical point of view.
Figure 8 indicates the numerical solutions obtained on the same condition as the experiments
performed by Yoshinaga et al. (1990) (see ®gure 2(a)). The solutions are seen to exist on a
closed curve, in which the upper and lower curve are shown by solid and dotted lines, respect-
ively. It is noted that the points A, B, X and Y will be referred in later part. Taking the case of

Table 2. Experimental conditions and results performed by Weber et al. (1976) for the cases where (a) (rS, dS,
CDS=(2575 kg/m3, 5 mm, 1.20) (b) (2610 kg/m3, 0.6 mm, 2.05) and (c) (1143 kg/m3, 50 mm, 1.17), respectively.

No. L(m) Lg(m) g jGa m/s jS m/s bs

(a)
1 55.4 6.2 0.8537 8.135 0.1697 0.0447
2 55.4 6.2 0.8537 5.517 0.0963 0.0267
3 55.4 6.2 0.8537 3.301 0.0755 0.0269
4 279.0 101.0 0.9607 2.641 0.0285 0.0113
5 282.0 101.0 0.9613 3.631 0.0632 0.0229
6 285.0 101.0 0.9620 5.423 0.0807 0.0339
7 288.0 101.0 0.9626 5.730 0.1350 0.0395
8 294.0 101.0 0.9637 3.678 0.0530 0.0189
9 324.0 101.0 0.9686 3.513 0.0547 0.0217
10 325.9 101.0 0.9693 5.612 0.1177 0.0406
11 329.9 101.0 0.9699 4.645 0.1091 0.0370
12 332.9 101.0 0.9702 3.395 0.0583 0.0251
13 407.6 290.0 0.9439 5.282 0.0788 0.0430
14 449.7 290.0 0.9518 3.702 0.0362 0.0149
15 449.8 197.0 0.9731 7.215 0.1325 0.0446
16 450.3 197.0 0.9712 5.187 0.0766 0.0258

(b)
1 257.3 4.9 0.9746 3.560 0.0778 0.0264
2 261.3 4.9 0.9672 5.517 0.1791 0.0710
3 261.3 4.9 0.9672 6.461 0.1720 0.0640
4 357.4 101.0 0.9672 5.022 0.1601 0.0601
5 357.4 101.0 0.9672 6.909 0.1528 0.0589
6 357.9 101.0 0.9654 3.112 0.0732 0.0325
7 449.4 197.0 0.9707 6.838 0.1056 0.0386

(c)
1 449.3 197.0 0.9711 7.026 0.2094 0.0470
2 449.3 296.0 0.9524 7.451 0.2998 0.0780
3 449.4 197.0 0.9707 5.494 0.1806 0.0470
4 449.4 197.0 0.9707 7.144 0.2215 0.0540
5 449.8 290.0 0.9574 9.785 0.3589 0.0860
6 451.0 341.0 0.9364 5.824 0.1652 0.0480
7 451.0 341.0 0.9364 8.252 0.2377 0.0600
8 451.0 341.0 0.9364 10.092 0.2865 0.0750
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Figure 7. (a) Comparison between experimental solid volumetric ¯ux jS,exp by Weber et al. (1976) and
theoretical ¯ux jS,cal, and (b) comparison of experimental relation between jL and jGa with theoretical

one in gas-liquid two-phase ¯ow.

Figure 8. Solution curves to governing equations for case (a) in table 1. Note that the upper solution is
shown by solid lines and the lower solution is done by the dotted lines, respectively. A thick dotted line

denotes the boundary between the solid and dotted lines.
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jS=0.136 m/s for example, the closed curve where the numerical solutions exist is divided into

two parts by a thick dotted line and the upper and lower curves agree with each other at both

ends. Again, the existing region of solutions expands and the closed curve enlarges itself with

the decrease in jS. Only the upper curve exists and the lower curve disappears at jS=0 m/s.

Namely, the numerical solution of jL for jS=0 m/s is reduced to a single value for jGa. As can

be understood from this ®gure, the experimental data are concentrated on the upper part of the

closed curve. At any rate, it has been demonstrated that the numerical solution to the governing

equations have the two values, if jS$0 m/s.

Let us now consider the di�erence between the two numerical solutions for the case where

jS=0.136 m/s and jGa=5.0 m/s. Figure 9(a) and (b) indicates the variation of the rising velocity

and volumetric fraction for each phase along a vertical pipe. The two points denoted by A and

B are the numerical solutions shown in ®gure 8. What is noticeable in ®gure 9(b) is that for the

solution A the volumetric fraction of liquid-phase is always larger than that of solid-phase. But,

the case of the solution B is the reverse. It is self-evident that the solution B is not realistic.

We will consider why there are two di�erent solutions on the same condition. Figure 10(a) in-

dicates the variation of pressure along the vertical pipe. Although it can be seen that the press-

ure at the bottom and top ends of the pipe is the same between the two solutions A and B, the

pressure distribution from the bottom to the top ends is di�erent between the two. In the two-

phase ¯ow region, the pressure gradient of the case B is steeper than that of the case A, but in

the three-phase ¯ow region, the former becomes more gradual than the latter.

Figure 10(b) denotes the variation of the respective forces per unit volume in the two- and

three-phase regions. Here, Fw, Fg and Fa are de®ned by

Fw � FwL �80�

Fg � FgG � FgL � FgS �81�

Figure 9. (a) Variation of rising velocity and (b) volumetric fraction for each phase along a vertical
pipe for the case where jS=0.136 m/s and jGa=5.0 m/s. Note that the solid and dotted lines denote the

numerical solution at points of A and B in ®gure 8, respectively.
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Fa � MG
duG
dx
�ML

duL
dx
�MS

duS
dx

� �
1

A
�82�

Accordingly, the negative value of the sum of the three kinds of forces corresponds to the press-
ure gradient

dP

dx
� ÿFw ÿ Fg ÿ Fa �83�

which can be easily derived by [4]±[6]. Attention must be paid to that FgG=0 N/m3 and MG=0
kg/s in the two-phase ¯ow region. In the ®gure 10(b), one can see that the gravity force Fg of
the case B is much larger than that of the case A in the two-phase ¯ow region. This is based
upon the di�erence in the solid volumetric fractions between both cases A and B. Namely, in
the case B, eS is much larger in the two-phase ¯ow region than eL, as shown in ®gure 9(b). This
fact leads to the sharpness of the pressure gradient of the case B in the two-phase ¯ow region.

In the three-phase ¯ow region, both Fg and Fw of the case A are kept always larger than
those of the case B, respectively. These results are owing to the fact that the gas volumetric frac-
tion of the case B is kept larger than that of the case A. Fg decreases along the x-axis for both
cases A and B. This is due to the increase in the gas volumetric fraction as the three-phase mix-
ture ¯ows upward in the upriser. Also, the friction force Fw of the case A is larger than that of
the case B. This is because the super®cial mixture velocity um (see [43]) of the case A is larger
than that of the case B, as shown in ®gure 9(a). Fw increase with the x-axis for both cases A
and B, because um becomes larger with x. The sum of the respective inertial forces Fa is very
small in comparison to Fg and Fw. At any rate, in contrast to the case of two-phase ¯ow region,
we ®nd that the pressure gradient of the case A is steeper in the three-phase region than that of
the case B.

Figure 10. (a) Variation of pressure along a vertical pipe, and (b) variation of respective forces
(see [80]±[82]) per unit volume in two- and three-phase regions for case where jS=0.136 m/s and
jGa=5.0 m/s. Note that the solid and dotted lines denote the solution at points of A and B in ®gure 8,

respectively.
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Eventually, it has been con®rmed that the presence of the two numerical solutions is based
upon the fact that two sets of ¯ow characteristics entirely di�erent in both the two- and three-
phase ¯ow regions can be obtained numerically. However, the fact that eS > eL in the two- and
three-phase ¯ow regions can not occur from a phenomenal point of view.

Finally, we consider theoretically the maximum amount of the solid particles to be lifted.
Figure 8 shows that the existing region of the numerical solution becomes small with the
increase in jS. The upper and lower limits are approachable on through the thick dotted line as
jS is increased. And the upper limit coincides with the lower one on the boundary line at a cer-
tain value of jS, max. That is, it is suggested that the numerical solution is not present in the
range of jS>jS,max. This corresponds to the theoretical value of the maximum volumetric ¯ux of
the solid particles. By the way, the point X, as shown in ®gure 8, denotes the solution satisfying
this condition and jS,max=0.18 m/s in this case. Next, the theoretical maximum value jL,max of
the liquid volumetric ¯ux to be lifted, of course, corresponds to the case where jS=0 m/s and
jL,max=1.28 m/s in the present case (see the point Y in ®gure 8).

6 . CONCLUSION

This paper has treated the theoretical analysis to predict the steady-state ¯ow characteristics
of the air-lift pump for the case where a transition from the solid±liquid two-phase ¯ow to the
solid±gas±liquid three-phase ¯ow occurs by injecting gas-phase into a vertical pipe through a
gas-injector. The system of governing equations is based upon the multi¯uid model. The tran-
sitions of the ¯ow pattern of gas-phase are taken into consideration in the system of equations
governing the solid±gas±liquid three-phase ¯ow. Therefore, even though the ¯ow pattern tran-
sition from the bubbly ¯ow to the slug ¯ow as well as from the slug ¯ow to the churn ¯ow
occurs, the ¯ow characteristics peculiar to the multiphase ¯ow can be obtained from qualitative
and quantitative points of view. In order to verify the validity of the system of governing
equations accounting for the transitions of the gas ¯ow pattern, the results calculated on the
basis of the present theoretical model have been compared to the experimental results obtained
by several other researchers. We have found that the theoretical model built up in the present
investigation gives best-®t to the prediction of the operation performance of an air-lift pump.
Furthermore, we have concretely demonstrated that the present theoretical model on the basis
of the multi¯uid model is capable of predicting the maximum solid/liquid volumetric ¯ux.

Here the emphasis has been placed upon obtaining the steady-state ¯ow characteristics,
because all of the experimental data to be compared with the calculation were taken on the
steady-state condition. We would like to add to note that the system of equations constructed
here can be extended to obtaining the transitional numerical solutions, although it is very di�-
cult to establish the transitional situation of the multiphase ¯ow in a pipe.
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